Passivity Breakdown and Crack Propagation Mechanisms of Lean Duplex (UNS S32001) Stainless Steel Reinforcement in High Alkaline Solution Under Stress Corrosion Cracking

Author:

Martin U.1ORCID,Birbilis N.2ORCID,Macdonald D.D.3ORCID,Bastidas D.M.1ORCID

Affiliation:

1. *National Center for Education and Research on Corrosion and Materials Performance, NCERCAMP-UA, Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 E Buchtel Ave, Akron, Ohio 44325-3906.

2. **Faculty of Science, Engineering and the Built Environment, Deakin University, Waurn Ponds, Victoria 3216, Australia.

3. ***Department of Nuclear Engineering, University of California at Berkeley, Berkeley, California 94720.

Abstract

The passivity breakdown and subsequent stress corrosion cracking (SCC) of Type 2001 lean duplex stainless steel (UNS S32001) reinforcement were investigated in a highly alkaline environment containing chlorides at a low temperature. Electrochemical analysis and mechanical testing were utilized to characterize the passive film development. Fractographic analysis was performed, correlating microstructure and corrosion performance, to reveal preferential crack paths. A chloride threshold below 4 wt% Cl− for a high alkaline environment was elucidated, with pitting susceptibility factor values close to unity, having a threshold critical areal cation vacancy concentration for passivity breakdown close to the 1013 cm−2. Pit initiation leading to passivity breakdown and crack nucleation in 4 wt% Cl− was triggered for stresses above σy, developing a low-frequency peak (0.1 Hz to 0.01 Hz) of the cracking process. Current peak deconvolution demonstrated passivity breakdown was triggered by the intensification in the rate of Type II transient and exposure time, while an increase in transient amplitude was related to the crack propagation. The α phase served as a nucleation site for pits, whose propagation was arrested at the γ phase. Predominant intergranular-SCC morphology through the α/γ interface was developed following anodic dissolution given the more active nature of the α phase (most active path); minor transgranular-SCC propagated through γ phase when high-stress concentration was reached, corresponding to slip-step dissolution.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3