Threshold Chloride Concentrations of Selected Corrosion-Resistant Rebar Materials Compared to Carbon Steel

Author:

Hurley M. F.1,Scully J. R.1

Affiliation:

1. 1Center for Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, 116 Engineers Way, Charlottesville, VA 22904-4745.

Abstract

Abstract The threshold chloride concentration for solid Type 316LN (UNS S31653) stainless steel, Type 316L (UNS S31603) stainless steel clad, 2101 (UNS S32101), Fe-9%Cr, and carbon steel rebar (ordinary ASTM A 615M) was investigated using potentiodynamic and potentiostatic current monitoring techniques in saturated calcium hydroxide (Ca[OH]2) + sodium chloride (NaCl) solutions. There is general consensus in this study and the literature that the chloride threshold for carbon steel is less than a chloride to hydroxl (Cl−/OH−) molar ratio of 1. Solid Type 316LN stainless steel rebar was found to have a much higher chloride threshold (i.e., threshold Cl−/OH− ratio > 20) than carbon steel (0.25 < Cl−/OH−< 0.34). Type 316L stainless steel clad rebar possessed a chloride threshold expressed as a Cl−/OH− ratio of 4.9 when cladding was intact. However, surface preparation, test method, duration of period exposed to a passivating condition prior to the introduction of chloride, and the presence of cladding defects all affected the threshold chloride concentration obtained. For instance, the presence of mill scale on any of the more corrosion-resistant materials reduced the chloride threshold to approximately that of carbon steel. The chloride threshold for Type 316L clad rebar was highly dependent on any defects that exposed the carbon steel core. At best, it was similar to that of solid stainless steel. However, when defective, it was equal to that of carbon steel rebar in the potentiostatic method used here. A model was implemented to predict the extension of the Cl− diffusion time period until corrosion initiation would be expected using rebar materials with a higher chloride threshold concentration than carbon steel. Model results confirmed that corrosion-resistant rebar materials in a pickled condition may increase time until chloride-induced breakdown of passivity and onset of corrosion to 100 years or more.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3