Three-Body Abrasion-Corrosion Behavior of As-Printed and Solution-Annealed Additively Manufactured 316L Stainless Steel

Author:

Salasi Mobin1,Wang Ke1,Pojtanabuntoeng Thunyaluk1,Pabbruwe Moreica1,Quadir Zakaria1,Rickard William2,Guagliardo Paul3,Iannuzzi Mariano1

Affiliation:

1. Curtin Corrosion Centre, Curtin University, Perth, Western Australia, Australia 6102.

2. John de Laeter Centre, Curtin University, Perth, Western Australia, Australia 6845.

3. Centre for Microscopy, Characterization and Analysis, the University of Western Australia, Crawley, Western Australia, Australia 6009.

Abstract

Selective laser melting (SLM) or powder bed fusion is a type of additive manufacturing technology with applications in, e.g., the orthopedics, energy, and aerospace industries. Several studies investigated the localized corrosion behavior of SLM-fabricated Type 316L (UNS S31603) stainless steel. However, little is known about the effects of tribocorrosive conditions on the response of stainless steels fabricated by SLM. In this study, the effects of third-body abrasive particles on the tribo-electrochemical behavior of SLM 316L stainless steel produced by SLM were investigated and compared with wrought counterparts (including UNS S31703, 317W) in 0.6 M NaCl. It was found that the presence of Mo played a more decisive role in the tribocorrosion behavior than the manufacturing method, i.e., 317W revealed the best tribocorrosion behavior vis-a-vis wrought 316L and the SLM-fabricated specimens. The improved tribocorrosion behavior contrasted with the much higher breakdown potential of the SLM-fabricated samples. Nano-scale secondary ion mass spectroscopy was used to investigate the effects of Mo on passivity. The implications of passivity and tribocorrosion behavior are discussed.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3