Pitting Corrosion of Inconel 600 in High-Temperature Water Containing CuCl2

Author:

Park J. R.1,Szklarska-Smialowska Z.1

Affiliation:

1. 1Department of Metallurgical Engineering, Ohio State University, 116 West 19th Avenue, Columbus, Ohio 43210.

Abstract

Abstract Pitting corrosion of Inconel 600 was studied in aqueous sodium and cupric chloride solutions at 60 and 280 C. The pit nucleation potential, Enp, was evaluated in two different concentrations of sodium chloride. Enp decreased with increasing concentrations of the chloride ion and with temperature. On specimen surfaces exposed to cupric chloride solutions, pitting occurred at open circuit potentials nearly equal to or higher than the Enp determined by anodic polarization in 0.01 M NaCl solution. The number and size of the pits increased with increasing concentrations of cupric chloride and dissolved oxygen. On specimens partly covered with polytetrafluorethylene (PTFE) tape (i.e., in the presence of artificial crevices), pitting occurred more easily at low concentrations of CuCl2 (≤ 20 ppm CuCl2 in deaerated solutions at 280 C). Tubes covered with oxide films that formed during the operation of model boilers exhibited greater pitting resistance than tubes with clean surfaces at 280 C, but less resistance at 60 C. Corrosion products contained in the pits were enriched in chromium with small amounts of copper, sulfur, and chlorine. The composition of corrosion products covering the pits was similar to that in the pits, but with the additional enrichment of iron. Presumably, sulfur present in Inconel 600 as an impurity was significant in the pitting process. The probable mechanism of the processes leading to pitting of Inconel 600 tubing in high-temperature water is discussed.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3