Effect of Oil/Water Intermittent Wetting on CO2 Corrosion in the Presence of Acridine and Myristic Acid

Author:

Norooziasl Neda1ORCID,Young David1ORCID,Brown Bruce1ORCID,Singer Marc1ORCID

Affiliation:

1. *Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio, 45701.

Abstract

The effect of a paraffinic model oil (LVT-200)-containing select surface-active compounds (myristic acid and acridine) on CO2 corrosion with and without intermittent wetting has been studied. Observations have shown that the presence of myristic acid in the oil phase does not affect the corrosion behavior due to its lack of partitioning in the water phase. However, after direct contact between the oil phase-containing myristic acid and the metal surface, there was a significant decrease in the corrosion rate. This phenomenon gradually diminished at pH 4.0 but was more persistent at pH 6.5. The presence of acridine in the oil phase was shown to have a strong inhibitive effect at pH 4.0, even during the partitioning step. The partitioning of acridine from the oil phase to the water phase at pH 4.0 was confirmed by ultraviolet-visible spectroscopy results. However, there was no inhibitive effect conferred by the presence of acridine on the corrosion rate at pH 6.5. An experimental methodology was developed that facilitated improved simulation of the effect of intermittent oil/water wetting on CO2 corrosion. The electrochemical current response during the oil/water intermittent wetting cycles showed that the persistency of model oil (without surface-active compounds) on the mild steel surface is only a matter of seconds. Corrosion rate measurements showed that the presence of myristic acid renders the oil layer more persistent after intermittent wetting compared to one-time direct contact.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3