Optimization of Cathodic Protection Systems of Tank Bottoms Using Boundary Elements, Inverse Analysis, and Genetic Algorithm

Author:

Santos W.J.1,Brasil S.L.D.C.2,Santiago J.A.F.3,Telles J.C.F.3,Gervasio J.P.K.4

Affiliation:

1. Department of Mathematics, UFRRJ, Caixa Postal 74505, CEP 23890-000, Seropédica, Rio de Janeiro, Brazil.

2. School of Chemistry, Federal University of Rio de Janeiro - UFRJ, CEP 21941-909, Rio de Janeiro, Rio de Janeiro, Brazil.

3. Department of Civil Engineering, COPPE/UFRJ, Caixa Postal 68506, CEP 21941-972, Rio de Janeiro, Rio de Janeiro, Brazil.

4. Petrobras, Rio de Janeiro, Brazil.

Abstract

The required current to efficiently protect the external bottom of aboveground storage tanks by means of impressed current cathodic protection was evaluated and optimized for anode number and positioning. The study introduced a numerical polarization curve obtained by inverse analysis, using a genetic algorithm, based on potential values measured in a real tank. An inverse boundary element-based genetic algorithm was developed to find the expected polarization curve from potential values measured in situ. To the problem optimization, an axisymmetric boundary element with a Newton-Raphson solution algorithm was used to accommodate the nonlinear boundary conditions. The system consisted of a tank directly over soil or a slender conductive concrete support layer. Impressed current anodes were positioned between the base and a secondary liner containment installed below the tank to prevent environmental damages in case of leakage. An alternative technique was adopted to analyze the two-region problem. Here a single soil region, with a calculated modified polarization curve was chosen, avoiding the two subregion analysis needed to represent the concrete layer and soil.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3