Fatigue and Static Crack Growth Rate of Alloy 718 Under Cathodic Polarization

Author:

Thodla Ramgopal1,Venkatesh Anand2

Affiliation:

1. R Thodla Materials Technology Department, DNV, Dublin, 43017, United States

2. A Venkatesh TechnipFMC Houston Headquarters, Houston, United States

Abstract

Fatigue crack growth rate was developed on three heats of alloy 718 (UNS N07718) under cathodic polarization, over a wide range of loading conditions. Fatigue crack growth rate increased with decreasing frequency over a range of Kmax and K conditions. In most cases, there was no evidence of a plateau in fatigue crack growth rate at low frequencies. The fatigue crack growth rate over the range of conditions evaluated were influenced by static crack growth rate at Kmax. The principle of superposition of fatigue crack growth and static crack growth was used to rationalize the observed crack growth rate response. Static crack growth rate of alloy 718 measured under constant K conditions, was lower than that measured under rising displacement conditions. A crack tip strain rate based model was used to rationalize the fatigue crack growth rate behavior and the static crack growth rate behavior under constant K. However, the formulation of the model for the rising K was not able to rationalize the crack growth rate under rising displacement conditions.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3