A Mechanistic Study of Carbon Steel Cracking in 360°C Air and Hydrogen Environments

Author:

Persaud S.Y.1,Arioka K.2,Farquharson K.3,Dixon C.3,Judge C.D.3

Affiliation:

1. Department of Mechanical and Materials Engineering, Queen’s University, Nicol Hall, 60 Union Street W, Kingston, Ontario K7L 2N8, Canada.

2. INSS, 64 Sata, Mihama-cho, Mikata-gun, Fukui Mihama 919-1205, Japan.

3. Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, Ontario K0J 1J0, Canada.

Abstract

Thirty percent cold-worked (CW) carbon steel tensile specimens were exposed to 360°C air and hydrogen environments (2 MPa H2 and 20 MPa H2) under an applied load to produce intergranular creep cracking. In this study, cutting-edge microscopy techniques were applied to characterize cracking on multiple length scales and in three dimensions. The objective was to develop a better mechanistic understanding of creep cracking in carbon steel, and the known deleterious effect of hydrogen (attack) at the micro-to-nanoscale. Amorphous carbon along the fracture path was observed in all experiments, with evidence for nanoscale cavities/methane bubbles in hydrogen exposures, particularly at cementite-ferrite boundaries. Results suggested that creep or residual stress led to breakdown of cementite to amorphous carbon, cavitation, and/or formation of methane (depending on H2 content); it is suggested that the combination of deleterious mechanisms leads to initiation and/or acceleration of creep cracking in CW carbon steel. Comparisons are made between the morphology of creep cracking in these laboratory experiments and recent results from characterization of creep cracking in ex-service carbon steel piping from a CANDU nuclear power plant. Although more subtle, similar morphology and chemistry at crack tips in laboratory and ex-service CW carbon steel suggests that the mechanism(s) of creep cracking is similar.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3