Atmospheric Stress Corrosion Cracking of Stainless Steel Rock Climbing Anchors, Part 2: Laboratory Experiments

Author:

Prošek Tomáš1,Lieberzeit Jiří1,Jarvis Alan2,Kiener Lionel2

Affiliation:

1. University of Chemistry and Technology Prague, Technopark Kralupy, Department of Metallic Construction Materials, Žižkova 7, 278 01 Kralupy nad Vltavou, Czech Republic.

2. International Climbing and Mountaineering Federation (UIAA), Monbijoustrasse 61, Postfach CH-3000 Bern 23, Switzerland.

Abstract

Atmospherically-induced stress corrosion cracking (AISCC) in the presence of chloride deposits has been responsible for considerable incidents of rock climbing anchors breaking under minimal loads in seaside locations, putting climbers lives at stake. However, to date, failures due to AISCC have only been documented in anchors made of Type 304/304L and similar, and no rigorously documented failures have been shown to occur to Type 316/316L anchors. In order to support preparation of a new standard classifying anchors according to their corrosion resistance, the influence of environmental parameters such as periodic washing of chloride deposits, electrolyte pH, and type of rock on AISCC initiation and crack growth rate was studied in laboratory conditions by exposing U-bent specimens of stainless steel Types 321, 304, and 316L with MgCl2 deposits in air at 40°C to 50°C and at 35% to 45% relative humidity. The type of rock and electrolyte pH were not critical parameters for AISCC. Alkaline conditions only slightly prolonged stable crack initiation period and decreased the crack growth rate. Periodic washing in sufficiently short intervals was capable of significantly retarding or even arresting AISCC. The crack growth rate in Type 316L stainless steel was 2- to 3-fold slower than in the molybdenum-free Types 304 and 321. These last two effects are quite likely responsible for the lack of failures observed in Type 316/316L. In view of the lifetime expectancy of rock climbing anchors and other safety-relevant members, the crack growth rate was unacceptably high in all studied materials and their installation should be avoided in vulnerable seaside regions.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3