A Monte Carlo Model for Pitting Corrosion in Phosphor Bronze Tape Used in Underground Power Transmission Cables

Author:

Zhang Lixin1,Gill Simon1,Gnanasambandam Sivashangari2,Foresta Maurizio3,Pan Jingzhe1,Li Fan4

Affiliation:

1. Department of Engineering, University of Leicester, Leicester LE1 7RH, United Kingdom.

2. Electricity Transmission Asset Management, National Grid, Warwick CV34 6DA, United Kingdom.

3. Delta Electronics (Netherlands) B.V. Zandsteen 15, 2132 MZ Hoofddorp, The Netherlands.

4. Amey Strategic Consulting, 10 Furnival Street, London EC4A 1AB, United Kingdom.

Abstract

Life of underground oil-filled power transmission cables used with phosphor bronze tapes is greatly reduced by pitting corrosion and hence accurate prediction of the pit growth in these tapes becomes essential. In the present work, the probability distribution of corrosion pit depth on phosphor bronze tapes is calculated using probabilistic Monte Carlo simulations and compared with the measured pit depth distribution on samples of broken tapes which have been in service for about 50 y. This Monte Carlo simulation is performed on every stable pit that nucleates, propagates, and repassivates on the metal surface. Due to the random nature of pitting corrosion, the probability of failure of this class of cables can be simulated based on the Monte Carlo model. This paper shows that the simulated pit depth distribution is very similar to the experimental data. The results demonstrate that the Monte Carlo model by Engelhardt and Macdonald can be effectively applied to long-term field data of phosphor bronze tapes, even over 50 y. In addition, the probability of failure due to pitting corrosion can be evaluated analytically, without need of conducting expensive and time-consuming experimental campaigns. Therefore, this probabilistic pit depth distribution model will be a powerful tool in the decision-making strategy for the replacement of underground power transmission cables near their end of life.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3