Corrosion Assessment of ASME Qualified Welding Procedures for Grade 2101 Lean Duplex Stainless Steel

Author:

Guilherme L.H.12,Reccagni P.3,Benedetti A.V.2,Fugivara C.S.2,Engelberg D.L.34

Affiliation:

1. Soudap Engineering Company, 14803-655, Araraquara, Brazil.

2. São Paulo State University - UNESP, Chemistry Institute, 14800-900, Araraquara, Brazil.

3. Corrosion and Protection Centre, School of Materials, The University of Manchester, M13 9PL, Manchester, United Kingdom.

4. Materials Performance Centre, School of Materials, The University of Manchester, United Kingdom.

Abstract

ASME qualified welding procedures do not guarantee suitable corrosion and passivation properties for lean duplex stainless steel welds. An evaluation of two ASME qualified welding procedures to optimize the corrosion performance of tungsten inert gas (TIG) welded grade 2101 duplex stainless steel using ER2209 weld consumable was conducted. The evolution of the microstructure was examined by optical and electron microscopy, ferrite-scope measurements, and scanning Kelvin probe force microscopy. An electrochemical mini-cell was then used to characterize the electrochemical behavior of different weld regions using the techniques such as the double loop electrochemical potentiokinetic reactivation test, standard potentiodynamic polarization tests, and cyclic potentiodynamic polarization. The fusion line was the most critical zone for localized corrosion for both welding procedures, due to the formation of Cr- and Mo-depleted zones, resulting in the highest degree of sensitization. The best performance was attributed to the weld face, due to the presence of higher Cr and Mo contents, highlighting the pitting corrosion resistance. A heat input range of 1.6 kJ/mm to 1.9 kJ/mm and low current density (WPS 1) indicated better corrosion performance of all weld regions. The electrochemical corrosion response was in all cases related to microstructural characteristics of the weld regions. The influence of weld parameters on microstructure development and corrosion performance is discussed.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3