Erosion-Corrosion of AISI 302 Stainless Steel Sudden Expansion Pipes in High Salt Wastewater: Effect of Fluid Flow on Different Positions of a Sudden Expansion Pipe

Author:

Wang Weibing1,Ren Yongsheng1

Affiliation:

1. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Department of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Ningxia University, Yinchuan 750021, People’s Republic of China.

Abstract

Erosion-corrosion (E-C) is common in chemical industries. Sudden expansion pipes (SEP) are one of the flow components which may experience severe erosion rates. Computational fluid dynamic modeling (CFD) and flow-through experiments were used to study E-C for a SEP of AISI 302 stainless steel. A typical geometry for SEP was investigated: 20 mm diameter inlet pipe, 40 mm diameter outlet pipe, with an inlet flow rate of 0.1 m/s, and 10 wt% concentration of SiO2. CFD simulation results showed that turbulence energy and wall shear were highest at 5 mm and fluid axial velocity was lowest at 5 mm from the inlet/outlet SEP connection point. E-C test results showed that the most severe E-C occurred between 5 mm and 7 mm downstream of the SEP. At deeper lengths into SEP, the corrosion rate decreased and remained constant. The results indicated that increasing wall shear and turbulence energy increased the mechanical effects of particles on SEP and hence increased the E-C rates of the reattachment point. This work provides a means of understanding E-C behavior and predicting erosion damage of SEP.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3