Technical Note: Characterization of Corrosion Films Formed on Austenitic Stainless Steel in Supercritical CO2 Containing H2O and O2

Author:

Oleksak Richard P.12,Baltrus John P.3,Teeter Lucas1,Ziomek-Moroz Margaret1,Doğan Ömer N.1

Affiliation:

1. National Energy Technology Laboratory, U.S. Department of Energy, 1450 Queen Avenue SW, Albany, OR 97321.

2. AECOM, PO Box 618, South Park, PA 15129.

3. National Energy Technology Laboratory, U.S. Department of Energy, 626 Cochrans Mill Road, Pittsburgh, PA 15236.

Abstract

Future technologies require structural alloys resistant to corrosion in supercritical CO2 (sCO2) fluids containing impurities such as H2O and O2. Traditional pipeline steels are potentially unsuitable for these environments and more corrosion resistant alloys such as stainless steels might be required. Little is known about the corrosion products formed on, and hence the processes which control corrosion of, stainless steels in impure sCO2 environments. In this study, austenitic stainless steel 347H (UNS S34709) was exposed to sCO2 containing H2O and O2 at 8 MPa and 50°C or 250°C, and separately to the aqueous phase in equilibrium with the sCO2 at 50°C, to simulate conditions expected in sCO2-based power cycles and carbon capture and storage pipelines. Only thin (<20 nm) surface films formed after 500 h resulting in small mass changes and corrosion rates <10−4 mm/y, suggesting the material resists significant degradation in these environments. X-ray photoelectron spectroscopy and transmission electron microscopy were used to characterize the corrosion films in detail. Exposure to the aqueous phase resulted in a thin (<5 nm) Cr-oxide and/or -hydroxide passive film, while exposure to sCO2 phases resulted in a multilayer Fe-rich oxide structure characteristic of a gas-phase oxidation process.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3