Affiliation:
1. Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environment Science and Engineering, North China Electric Power University, Baoding 071003, People’s Republic of China. Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People’s Republic of China.
Abstract
Oxide films were formed on A508-3 steel in simulated pressurized water reactor (PWR) primary water at the temperature of 561 ± 1 K for 168 h with zinc and/or aluminum injection. Corrosion behaviors of oxide films were analyzed by electrochemical polarization, electrochemical impedance spectroscopy, Mott-Schottky plots, photocurrent measurement, scanning electronic microscopy, and x-ray diffraction. The results showed that zinc and aluminum simultaneous injection technology decreased the corrosion current density, increased the impedance value, made the oxide film more compact, and affected the semiconductor properties of the oxide film. The increase in zinc concentration improved the corrosion resistance to some extent. ZnAl2O4 phase, with extremely low solubility and high stability, had been detected in the oxide film; this substance changed the composition of the oxide film and affected the corrosion behavior of A508-3 steel.
Subject
General Materials Science,General Chemical Engineering,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献