Laser Surface Melting to Mitigate Intergranular Corrosion of Sensitized AA5083

Author:

Hossain Md Sojib1ORCID,Skelton Jonathan1,P. Moffat William1,Fitz-Gerald James1ORCID

Affiliation:

1. *Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia, 22904.

Abstract

AA5083 is a solution-strengthened, supersaturated Al-Mg alloy. It has become widely used in corrosive and harsh environments, such as marine settings, due to its exceptional corrosion resistance and impressive strength-to-weight ratio. However, when exposed to moderately elevated temperatures, the alloy undergoes a process called sensitization, resulting in the precipitation of the β phase. This intermetallic precipitate is rich in magnesium and has anodic properties, creating a microgalvanic couple with the more noble aluminum (Al) matrix. Consequently, the sensitized alloy experiences intergranular corrosion due to the anodic dissolution of the grain boundary in a corrosive environment. Various techniques for dissolving intermetallic particles into the matrix have been reported in the literature, but they are often impractical for service components, and traditional solutionizing treatments tend to decrease mechanical properties. This study aimed to investigate the impact of pulsed excimer laser irradiation, as a novel approach, on the surface morphology, chemical composition, and electrochemical behavior of highly sensitized AA5083 samples. To achieve this, various analytical techniques were used, including profilometry, optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and localized potentiostat scans. The results of this investigation showed that laser surface melting (LSM) led to a reduction in the open-circuit potential and exchange current density in a 0.6 M NaCl aqueous solution, mainly due to increased surface homogenization. Furthermore, multiple grazing incident x-ray diffraction scans were performed to identify the changes in the metallurgical and crystallographic parameters in the near-surface region. Anodic polarization scans of the LSM surface galvanically coupled with a more cathodic base metal exhibited a lower corrosion current density than the theoretical value suggested by mixed potential theory. The improved performance could potentially be attributed to the surface homogenization and formation of a robust passive layer on the LSM surface.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3