Effect of Accelerated Cooling on Linepipe Steel Mill Scale and Resulting Localized Corrosion Susceptibility

Author:

Filice Sara E.1,McDermid Joseph R.1,Kish Joseph R.1

Affiliation:

1. Department of Materials Science and Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4L8.

Abstract

The structure and composition of mill scale on linepipe steel formed with and without accelerated cooling conditions (ACC) was investigated and correlated to localized corrosion susceptibility. The mill scale structure/composition was investigated using scanning electron microscopy equipped with x-ray energy dispersive spectroscopy and electron backscatter diffraction, as well as x-ray diffraction. Localized dissolution of the mill scale was investigated using electrochemical techniques including open-circuit potential measurements, electrochemical impedance spectroscopy, and electrochemical noise measurements in a corrosive phase solution. The various surface analytical and electrochemical techniques indicated that the mill scale formed without ACC consists of a relatively crack-free, thick inner wüstite layer with a thinner magnetite outer layer. However, the mill scale formed with ACC comprised a magnetite layer containing islands of retained wüstite, with some evidence of magnetite/iron eutectoid formation and which exhibited a relatively high density of through-scale cracks. These cracks can provide direct paths that connect the corrosive solution to the steel substrate, leading to a more rapid breakdown of the mill scale. Additionally, the cracks can form a crevice between the mill scale and the steel surface, providing sites for pit initiation and growth. Coefficient of thermal expansion mismatch thermal stress calculations indicate that a magnetite-based scale is more susceptible to cracking/spalling than a wüstite-based scale, resulting in the ACC plate being more susceptible to localized corrosion.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3