Stress Corrosion Cracking of Sensitized 304 Austenitic Stainless Steel in Sulfurous Acid

Author:

Ahmad S.1,Mehta M. L.2,Saraf S. K.2,Saraswat I. P.2

Affiliation:

1. 1Research Scholar, Department of Metallurgical Engineering, University of Roorkee, Roorkee (India).

2. 2Faculty members of Departments of Metallurgical Engineering, Chemical Engineering, and Chemistry, University of Roorkee, Roorkee (India).

Abstract

Abstract Stress corrosion cracking investigations on U-bend samples of sensitized 304 austenitic stainless steel have been conducted in sulfurous acid solutions in the concentration range, 0.40 to 10% at ambient temperatures. Samples were found to fracture in solutions of more than 3% sulfurous acid. Chemical analysis of solutions after tests showed appreciable reduction in concentration of H2SO3, formation of H2SO4, and also the presence of Fe, Cr, and S ions. Some model experiments were carried out to ascertain the chemical species causing stress corrosion cracking and the role of oxygen and FeS in generating them. Bubbling of oxygen gas through (1) solution of H2SO3 with sample, (2) distilled water with FeS chips, and (3) solution of H2SO3 with FeS chips and sample, resulted in the formation of tetrathionic acid. Results indicate that the sulfurous acid does not directly cause cracking but it is the tetrathionic acid formed by either the interaction of sulfurous acid and austenitic stainless steel or the interaction of FeS and oxygen, that is responsible for cracking. Metallorgraphic examinations of the fracture confirmed intergranular cracking.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3