Increased Filiform Corrosion Resistance Utilizing a Zirconium-Based Conversion Coating on an Al-Zn-Mg-Cu (AA7075-T6) Alloy as well as Selected Surface Treatments

Author:

Glover C.F.1,Lim M.L.C.2,Scully J.R.1

Affiliation:

1. Center of Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904.

2. Coatings Innovation Center, PPG, Allison Park, Pennsylvania 15101.

Abstract

This study investigates the effect of surface treatment on the formation of Zr-based conversion coatings on AA7075-T6 automotive aluminum alloys and their resistance to filiform corrosion (FFC). Two different surface treatments were studied: (i) alkaline-cleaning and (ii) alkaline-cleaning with a subsequent acid deoxidation step. A model poly-vinyl butyral primer coating was used as the topcoat and specimens were studied with and without the application of a Zr-based conversion coating. Comparisons were made against a control that had no surface treatment. The FFC filament initiation time and propagation kinetics were of particular interest. Scanning electron microscopy and x-ray photoelectron spectroscopy were used to examine the conversion coating thickness and composition. A bi-layer conversion coating structure is demonstrated and both surface treatments are shown to produce copper enrichment that promotes the formation of the Zr-rich coating. Specimens prepared by alkaline cleaning-only resulted in a substantially thicker oxide layer of which 97% was ZrO2. These specimens provide superior resistance to FFC where the thick Zr-rich oxide is thought to provide a dense blocking layer that prevents electron transfer at the interface. In contrast, the control specimen, exposed only to the copper additions present in the conversion bath, is shown to produce an Al oxide-rich layer with only a 33% ZrO2 contribution in the outer layer. The findings demonstrate that the redistribution of functional copper species, that is shown to occur during surface treatment processes, is crucial for the formation of a robust Zr film.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3