The Influence of Coating Thickness and Composition on the Corrosion Propagation Rates of Galvanized Rebar in Cracked Concrete

Author:

Ogunsanya I.G.1,Hansson C.M.1

Affiliation:

1. Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.

Abstract

A study has been conducted of the chloride-induced corrosion behavior of four different batches of galvanized steel reinforcement embedded in sound and in cracked concrete. One batch of bars was of conventionally produced hot-dipped galvanized (HDG) steel, two were prototypes of continuously galvanized rebar, and the fourth was a hot-dipped bar with an experimental Zn-Al alloy coating. Carbon (black) steel bars were also tested for comparison purposes. The continuously galvanized process is aimed at producing a thinner, but more ductile coating than that formed by conventionally hot-dipped galvanizing process. Metallographic examination of the as-received galvanized bars showed a wide variation of the coating thickness around and along the bars, and the continuously galvanized coatings were consistently thinner than specified. All bars were cast in concrete which was subsequently cracked either parallel to or perpendicular to the embedded bars. Additional specimens were tested in the sound (non-cracked) concrete. All specimens were constantly exposed to a chloride brine for 64 weeks, and were electrochemically assessed bi-weekly during the exposure period. The electrochemical results and visual examination after autopsy showed that no active corrosion was initiated in either the galvanized or black rebar reinforced non-cracked concrete specimens. Therefore, the data in this project give no indication of initiation time or chloride threshold concentration for corrosion of these bars. On the other hand, in all cracked concrete specimens, corrosion initiated at the base of the crack and extended along or around the bars. In the cracked specimens, all galvanized bars exhibited lower current densities than the black bars, with the HDG being the lowest. Recommendations are given for appropriate interpretation of half-cell potentials of the galvanized bars investigated in terms of high or low probability of active corrosion.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3