Development of a Method for Determining the Residual Life of Structural Elements with Cracks Under the Action of Load and Corrosive Environment, as well as the Application of Corrosion Inhibitors to Enhance It

Author:

Andreykiv O.1,Dolinska I.23ORCID,Nastasiak S.1ORCID,Zviahin N.1

Affiliation:

1. *Lviv National Franko University, Department of mechanics, 1 University St., Lviv, Ukraine, 79000.

2. **Karpenko Physic-Mechanical Institute NASU Ukraine, Department of acoustic methods and means of technical diagnostics, 5, Naukova St., Lviv, Ukraine, 79000.

3. ***Bydgoszcz University of Science and Technology, Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz, 85-796, Poland.

Abstract

A developed method for determining the lifespan of structural elements with large-scale cracks of complex geometry under the influence of long-term static loads and corrosive environments. The method is based on an appropriate computational model, which relies on the first law of thermodynamics for the elementary act of local failure (crack propagation), some fundamental principles of physical chemistry, as well as the basic principles of fracture mechanics. The advantages of this method over existing ones are substantiated. The application of the method is demonstrated through examples involving the determination of the residual life of such structural elements as torsion and a pipe with small cracks made of 45KhN2MFA steel (tempered at 470 K and 725 K) under the influence of long-term static loading and distilled water. As the cracks are considered small, we have constructed a computational model in terms of deformation parameters, including a well-known counterpart in fracture mechanics, crack opening at the crack tip δt. At the same time, based on available experimental data from the literature, it is substantiated that the application of existing linear fracture mechanics methods in stress intensity factors KI for implementing the mentioned problems, the application of existing linear fracture mechanics methods is inappropriate. To determine the residual life of structural elements using this method, it is necessary to have kinetic diagrams in coordinates of the growth rate of small cracks and the crack opening at the crack tip, which means V ∼ δt. These diagrams are constructed here using the provided formulas for determining δt and diagrams are constructed here using the provided formulas and known experimental data for 45KhN2MFA steel under the influence of distilled water and static tension. Using the mentioned method, the residual lifespans of the torsion and the pipe were calculated under the influence of long-term static loading and distilled water. Additionally, the effectiveness of water solutions of well-known inorganic corrosion inhibitors on the residual lifespan of the mentioned structural elements was verified through calculations. It was found that the residual lifespan effectively characterizes the performance of corrosion inhibitors, which can be applied in engineering practice.

Publisher

Association for Materials Protection and Performance (AMPP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3