Investigating the Effect of pH on Corroding Magnesium by Dynamic pH Sweep Coupled with Electrochemical Measurements

Author:

Curioni Michele1,Lyu Meng1,Cioncolini Andrea2,Scenini Fabio1

Affiliation:

1. Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom.

2. Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom.

Abstract

A new experimental setup for controlling dynamically the pH of a sodium chloride solution during corrosion testing and electrochemical measurements on magnesium is presented. The setup comprises an electrochemical cell divided in two compartments such as ion exchange is possible between the two compartments, but macroscopic exchange of the NaCl solution is avoided. Each of the two compartment contains a graphite electrode, and a pH probe is immersed into one of the two compartment (named test cell) to acquire the value of pH. A controller, connected to a computer, adjusts the potential between the two inert electrodes, such as to develop hydrogen from one electrode and oxygen from the other. As a result, the pH in each compartment increases and decreases respectively. By sequentially measuring the pH and applying an adequate potential to the graphite electrodes, the pH in the test cell can be controlled precisely. In order to perform electrochemical measurement as a function of pH, an additional graphite counter electrode, an Ag/AgCl reference electrode, and a magnesium electrode are also placed in the test cell. As a result, it has been possible to perform pH sweep experiments and to obtain information on the variation of electrochemical behavior of magnesium as a function of the environment pH.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3