Effect of Uniaxial Tension-Induced Plastic Strain on the Microstructure and Corrosion Behavior of 13Cr Martensitic Stainless Steel

Author:

Salahi Salar1,Kazemipour Mostafa1,Nasiri Ali2

Affiliation:

1. Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL, A1B 3X5 Canada.

2. Department of Mechanical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.

Abstract

This study aims to understand the correlation between the manufacturing process-induced plastic deformation, microstructure, and corrosion behavior of a 13Cr martensitic stainless steel tubing material (UNS S42000). Comparisons were made between the microstructure, crystallographic orientation, and corrosion performance of a texture-free, heat-treated sample and uniaxially tensioned samples to the elongations of 5% and 22%. Cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy were performed on all samples in aerated 3.5 wt% NaCl electrolyte at room temperature. Overall, the corrosion resistance of the samples was found to decrease with increasing deformation level. A more stable and higher corrosion potential and pitting potential values with a better stability of the passive film were derived for the nondeformed sample, whereas the 5% and 22% elongated samples exhibited lower corrosion and pitting potential values and were characterized by having a less stable passive layer. All samples consistently revealed micropit formation on the lath boundaries where a high concentration of chromium carbide precipitates was detected. Increasing the level of plastic strain in 13Cr stainless steel was found to enlarge the size of sensitized regions along the matrix/coarse chromium carbide precipitates interface, leading to more regions susceptible to initiation and propagation of pitting.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3