Affiliation:
1. Department of Materials Science and Engineering, University of Texas at Arlington, Texas 76019.
Abstract
Adsorption and inhibition behavior of 1,2,3-benzotriazole (BTA) and 2,5-dimercapto-1,3,4-thiadiazole (DMTD) on brazing Cu-Ag alloy was studied in deionized water using potentiodynamic polarization measurement, adsorption isotherm investigation, and x-ray photoelectron spectroscopy (XPS). Pure Ag and pure Cu were included to investigate the mere effect of each component on the alloy’s behavior. Results show better inhibition of DMTD for Ag and BTA for Cu, both by chemisorption. BTA was found to follow Langmuir isotherm while DMTD obeyed Temkin adsorption isotherm, despite both acting as a mixed-type inhibitor. Combining the two inhibitors increased the inhibition efficiency over 80% for the Cu-Ag alloy. XPS spectra demonstrate the formation of DMTD protective film through DMTD’s functional groups of pyrrolic N from the azole ring and thiol S from the mercapto anchoring group on Ag and thiol S on Cu. Compared to BTA, the higher affinity of DMTD to Ag was attributed to the involvement of two heteroatoms with the Ag surface.
Subject
General Materials Science,General Chemical Engineering,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献