Effect of Heat Treatment, Composition and Microstructure on Corrosion of 18Cr-8Ni-Ti Stainless Steels in Acids

Author:

STREICHER MICHAEL A.

Abstract

Abstract Titanium additions to 18Cr-8Ni steels can effectively eliminate susceptibility to intergranular attack associated with the precipitation of chromium carbides. However, these additions also drastically reduce the grain size of these steels and promote the formation of sigma phase. Both of these factors modify the behavior of titanium-stabilized steels in corrosive environments. A detailed investigation of the influence of heat treatment and microstructure on the corrosion resistance of four titanium-stabilized, AISI 321, heats is described. Incomplete stabilization of carbon by titanium leads to precipitation of chromium carbides on heating in the range of 800 F to 1600 F. This type of susceptibility is readily detected in the oxalic acid etch test, the nitric-hydrofluoric acid test, the copper sulfate-sulfuric acid test, the ferric sulfate-sulfuric acid test, and in the nitric acid test. A second type of susceptibility to intergranular attack is associated with the formation of sigma phase, which may precipitate in a sub-microscopic form during heating in the range of 1150 to 1550 F. It is detected only in the nitric acid test and, to a lesser extent, in the ferric sulfate-sulfuric acid test. The action of various acid solutions on titanium-stabilized stainless steels are compared by means of metallographic studies of microstructures and of progressive corrosion, and by measurements of weight loss and change in electrical resistance of corroding specimens. The data obtained are used to explain the action of acids on these steels and to recommend procedures for evaluation testing.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3