Effect of Silicon on High Temperature Oxidation Of Stainless Steels★

Author:

RADAVICH JOHN F.

Abstract

Abstract Growth of oxide films at 600 and 800 C on a series of 16 Cr-10 Ni-bal Fe stainless steels with silicon contents ranging from 0.17 to 3.55 percent was studied by electron microscopy, electron diffraction, X-ray diffraction and X-ray fluorescence analysis techniques. Oxide scales and sub-scales formed during oxidation at 1000 C were studied optically in cross section as well as by X-ray diffraction and fluorescence analysis. Results show that as silicon content increases oxidation resistance increases rapidly until at the high silicon level, 3.55 percent, a very thin oxide film is formed at 60u and 800 G and very little oxide scale forms at 1000 C. Mechanism of oxidation resistance imparted by silicon appears to be that it decreases the number of defects in the initial oxide films formed at the metal-oxide interface. With a lesser number of defects in the thin film, an enrichment of Cr at the metal-oxide interface and in the oxide films occurs and the rate of diffusion of iron outward to form the oxide scale is greatly retarded. 2.3.7

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3