Stress Corrosion Cracking of Alpha Titanium Alloys at Room Temperature

Author:

POWELL D. T.,SCULLY J. C.

Abstract

Abstract Transgranular stress corrosion cracks are formed in Ti-5Al-2.5Sn alloy immersed in a 3 percent NaCl aqueous solution when tensile specimens are dynamically strained over a narrow range of rates. Metallographic evidence suggests that the critical process during crack propagation is entry of hydrogen into the alloy at the crack tip immediately following creation of fresh metal surface. Fractographic examination reveals that cracks propagate by a discontinuous cleavage mechanism. As each incremental growth is arrested, the embrittlement process resumes. Ductile fracture is observed in specimens strained (a) at high tensile rates because there is insufficient time for embrittlement to occur, and (b) at low tensile strain rates because repassivation occurs more readily and hydrogen entry is substantially reduced. In methanolic solutions containing HCl, an identical cleavage crack propagation process is observed. In addition, a slow intergranular dissolution mechanism is found in alloys susceptible and nonsusceptible to cleavage-type failure. This is initiated in specimens that have regions of high residual stress, e.g., sheared edges and continues until the mechanical strength of the alloy is reduced to a very low value. During this process hydrogen is picked up by the metal. Clevage has been observed in specimens broken in air after exposure. Vacuum annealing substantially reduces but does not eliminate this slower form of attack by removing initiation sites. Anodic polarization at low current densities produces extremely severe intergranular attack. The significance of dislocation arrangements, mechanical properties, and electrochemical reactions at the crack tip are discussed in detail. In particular, it is suggested that cathodic polarization can prevent cracking by forming films which reduce the rate of hydrogen ingress. In 10N HCl solutions, cathodic polarization does not prevent cracking.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Sub-Critical Cracking in a Ti-5Al-2.5Sn Liquid Hydrogen Control Valve;ASM Failure Analysis Case Histories: Air and Spacecraft;2019-06-01

2. Microstructure anisotropy and its implication in mechanical properties of biomedical titanium alloy processed by electron beam melting;Materials Science and Engineering: A;2019-01

3. Five-parameter intervariant boundary characterization of martensite in commercially pure titanium;Acta Materialia;2018-08

4. Marine Corrosion;Reference Module in Materials Science and Materials Engineering;2017

5. Stress-Corrosion Cracking of Titanium Alloys;Stress-Corrosion Cracking;2017-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3