Author:
LOGINOW A. W.,BATES J. F.
Abstract
Abstract
In certain applications, stress corrosion cracking of austenitic stainless steels has occurred when these steels are subjected to tension stresses (residual and applied) and are exposed to hot chloride solutions. Although stress corrosion cracking can be prevented by treatments to relieve residual stresses and by control of the environment, such procedures are expensive and not always reliable. An extensive study was therefore undertaken to develop a steel that would-be inherently resistant to stress corrosion cracking. The results of the study, conducted on stressed specimens of experimental steels immersed in a boiling 42% magnesium chloride solution, showed that carbon and nickel improved the stress corrosion resistance of annealed steels, and? nickel and silicon increased the resistance of cold-worked steels. It was also found that nitrogen decreased the resistance of annealed steels whereas phosphorus and molybdenum decreased the resistance of cold-worked steels. Manganese, copper, chromium, sulfur, and aluminum had little or no effect on stress corrosion resistance. This study resulted in the formulation of a steel composition containing 18% chromium, 18% nickel, 2% silicon, and 0.06% carbon, with low phosphorus and molybdenum contents. This steel was melted in an electric furnace; and1 its, stress corrosion, corrosion, and mechanical properties were determined. Test results show that the new steel (called USS 18-18-2 stainless steel) is much more resistant to stress; corrosion cracking than currently available austenitic stainless steels. Furthermore, the resistance of this steel is better than that of a 20% chromium, 34% nickel alloy that is being marketed; for its resistance to stress corrosion cracking.
Subject
General Materials Science,General Chemical Engineering,General Chemistry
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献