The Effects of Cathodic Reagent Concentration and Small Solution Volumes on the Corrosion of Copper in Dilute Nitric Acid Solutions

Author:

Turnbull J.1,Szukalo R.1,Behazin M.1,Hall D.2,Zagidulin D.1,Ramamurthy S.3,Wren J.C.1,Shoesmith D.W.13

Affiliation:

1. University of Western Ontario, Department of Chemistry, 1151 Richmond St., London, Ontario, Canada, N6A 5B7.

2. Nuclear Waste Management Organization, 22 St. Claire Avenue East, 6th Floor, Toronto, Ontario, Canada, M4T 2S3.

3. University of Western Ontario, Surface Science Western, 999 Collip Circle, London, Ontario, Canada, N6G 0J3.

Abstract

The exposure conditions experienced by copper-coated high-level nuclear waste containers in a deep geologic repository will evolve with time. An early exposure period involving the gamma irradiation of aerated humid vapor could lead to the formation of nitric acid condensed in limited volumes of water on the container surface. The evolution of the corrosion processes under these conditions have been studied using pH measurements in limited volumes of water containing various concentrations of nitric acid. The extent and morphology of corrosion was examined using scanning electron microscopy on surfaces and on focused ion beam cut cross sections. The composition of corrosion products was determined by energy dispersive x-ray analyses and Raman spectroscopy. In the absence of dissolved oxygen only minor corrosion was observed with the reduction of nitric acid inhibited by the formation of either chemisorbed nitrate and nitrite species or the formation of a thin cuprite (Cu2O) layer. When the solution was aerated, both oxygen and nitric acid acted as cathodic reagents. After extensive exposure periods corrosion was stifled by the formation of corrosion product deposits of Cu2O, CuO (tenorite), and Cu2NO3(OH)3 (rouaite).

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3