Affiliation:
1. Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.
2. College of Engineering and Computer Science, The Australian National University, Acton, ACT, 2601, Australia.
Abstract
The role of magnesium silicide (Mg2Si) and silicon (Si) particles in the localized corrosion of aluminum (Al) alloys was investigated herein. Sub-micrometer-sized Mg2Si and Si particles were grown in the Al matrix of Al-Mg-Si and Al-Si alloys, respectively, and characterized by transmission electron microscopy (TEM). A quasi in situ TEM technique was used to study an identical location containing Mg2Si or Si particle in the Al matrix, prior to and following a period of immersion in 0.1 M NaCl at pH 6, 2, and 12. At pH 6 and 2, Mg2Si was initially “anodic,” preferentially dealloying via selective dissolution of Mg, resulting in the development of SiO-rich remnants that are electrochemically inert. The SiO-rich remnants at pH 2 physically detached from the Al matrix. Silicon particles were electrochemically inert at pH 6, while “cathodic” at pH 2, dissolving the Al matrix at their periphery. It was observed that copper (Cu) was redeposited on Si particles at pH 2. At pH 12, Mg2Si and Si were “cathodic” to the Al matrix. This study clarifies, and provides new insights into, the characteristics of Al alloy physical manifestation of corrosion associated with Mg2Si and Si at the nanoscale.
Subject
General Materials Science,General Chemical Engineering,General Chemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献