Galvanically Induced Intergranular Corrosion of AA5083-H131 Under Atmospheric Exposure Conditions: Part 1—Experimental Characterization

Author:

Mizuno D.,Kelly R.G.

Abstract

In a two-part series of papers, the galvanic corrosion behavior of sensitized aluminum alloy (AA)5083-H131 (UNS A95083) when coupled with AISI 4340 (UNS G43400) steel was studied experimentally and computationally, with an emphasis on atmospheric conditions. In Part 1, the electrochemical kinetics of AA5083-H131 and steel in salt solutions of relevance to atmospheric corrosion were determined, including the influence of the degree of sensitization (DoS), potential, and sodium chloride (NaCl) concentration in the context of intergranular corrosion (IGC) propagation. More severe IGC was seen on materials with higher degrees of DoS, with damage depths of 1 mm or more developing in 100 h. The extent of IGC damage over 100 h was proportional to potential for a wide range of NaCl concentrations. These results from full immersion were compared with exposure testing and scanning Kelvin probe (SKP) measurements conducted under atmospheric conditions. It was found that the extent and spatial distribution of IGC damage on the atmospherically exposed material corresponded well to the IGC damage distribution expected from the SKP potential measurements and the damage results from the full immersion experiments. These findings are used as the input data for the computational model to predict the IGC damage distribution presented in the second paper.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3