Understanding of the Interaction Between Crystallographic Orientation and Service Environment on Nonoriented Silicon Steel Corrosion

Author:

Li Yanrui1,Wei Yinghui12ORCID,Liu Baosheng1ORCID,Hou Lifeng2ORCID,Zhang Shaohua1ORCID,Liu Wen1

Affiliation:

1. *College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, China, 030024.

2. **College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China, 030024.

Abstract

The effect of crystallographic orientation and environmental factors on the corrosion behavior of 35TWV1900 nonoriented silicon steel at various temperatures (25°C, 40°C, and 60°C) and Cl− concentrations (0.1 mol/L, 0.6 mol/L, and 1 mol/L) were investigated by electrochemical tests and immersion experiments. The results have revealed that the (111) plane exhibits a higher corrosion rate compared with (001) and (101) planes. The increased temperature promotes the anodic dissolution of the substrate, accelerating the formation of corrosion products and the transformation of β/γ-FeOOH to α-FeOOH/Fe3O4. In the immersion environment, the corrosion mechanism is a typical oxygen-absorbing corrosion mechanism. During the electrochemical reaction phase, the corrosion rate shows a trend of first increasing and then decreasing with the increase of Cl− concentration, which can be explained by the catalytic dissolution effect and the protective effect of adsorbed Cl− on the surface. Meanwhile, with the injection of Cl−, the content of dissolved oxygen in the solution decreases and the adsorption competition between Cl− and oxygen increases, leading to the reduction of corrosion rate and inhibiting the formation of an oxide film. The two stages of corrosion in an immersion environment are described, and the corrosion mechanism is elucidated.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3