Machine Learning Approaches to Model Galvanic Corrosion of Coated Al Alloy Systems

Author:

Jokar Mahdi1,Guo Xiaolei1,Frankel G.S.1ORCID

Affiliation:

1. *Fontana Corrosion Center, The Ohio State University, Columbus, Ohio 43210.

Abstract

Previous studies have shown how galvanic coupling susceptibility between stainless steel 316 or titanium alloy fasteners and coated aluminum alloy 7075-T6 depends on the chosen coating system and environmental factors such as relative humidity (RH) and chloride concentration. In this study, several machine learning models were developed to predict, analyze, and quantify galvanic corrosion arising between relatively noble fasteners and coated aluminum alloy panels. Different independent factors including pretreatment, primer coating, topcoat, RH, chloride concentration, fastener material, fastener quantity, existence of a defect, type of environment, and time of wetness were evaluated for their effect on galvanic coupling lost volume. Artificial neural networks (ANN), random forest regression (RFR), and multiple linear regression (MLR) were used to develop damage functions for galvanic corrosion. ANN, RFR, and MLR models all showed a reasonable fit for lost volume as a function of different inputs.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3