Microstructural and Electrochemical Analyses of Al-Zn-In Sacrificial Anode Produced Using Semisolid Slope Casting Process Under Various Casting Conditions

Author:

Soltanpour Mojtaba1,Boroujeny Behrooz Shayegh2,Nourbakhsh Amir Abbas1

Affiliation:

1. *Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran.

2. **Department of Engineering, Shahrekord University, Shahrekord 64165478, Iran.

Abstract

The effect of superheat temperature, slope angle, and the length of the cooling surface on the microstructure and electrochemical behavior of the Al-Zn-In sacrificial anode were investigated. The optimal microstructure, as measured by the highest sphericity (0.72) and the smallest grain size (32 μm), was obtained by the melt at a temperature of 680°C, the slope angle of 45°, and the cooling surface length of 500 mm. Increasing the superheat temperature and the length of the cooling surface had the greatest influence on the sacrificial anode’s microstructural characteristics and electrochemical performance. The corrosion rate for the optimal and primary as-cast Al-Zn-In (blank) samples was 0.14 mm/y and 0.034 mm/y, respectively, indicating that implementing a semisolid process had a positive effect on the corrosion rate of the sacrificial anode. Furthermore, the reduction in corrosion resistance for the optimal sample compared to the blank sample, as well as the continuous corrosion process occurring without significant changes in corrosion resistance over time as measured by the electrochemical impedance spectroscopy (EIS) test, indicates that corrosion data and EIS results were in agreement. In addition, the electrical current that the optimal anode sample can provide has increased from 0.006 A to 0.012 A when compared to the blank sample, according to the results of the chronoamperometry test.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3