Localized Corrosion Resistance of Nickel Alloy 718 in Chloride-Containing Environments

Author:

Reyad A.1ORCID,Hazarabedian M.S.2,Hou Yang1ORCID,Hornus E.C.3ORCID,Iannuzzi Mariano1

Affiliation:

1. *Curtin Corrosion Centre, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia.

2. **KBR Government Solutions, KBR Inc., Perth, Western Australia, 6000, Australia.

3. ***Edgar C. Hornus, Gerencia Materiales, Comisión Nacional de Energía Atómica, Instituto Sabato, UNSAM/CNEA, San Martín, B1650KNA Buenos Aires, Argentina.

Abstract

Resistant to aggressive reducing environments and combining excellent mechanical properties, the age-hardenable Alloy 718 is the most broadly used nickel alloy in the oil and gas industry. Nevertheless, its localized corrosion resistance in oxidizing halide-containing environments has yet to be thoroughly investigated, with conflicting results discussed in the literature. In this regard, Alloy 718 has a relatively low pitting resistance equivalent, limiting in practice its use, where localized corrosion is expected, particularly in seawater applications. This work quantified the localized corrosion resistance of the alloy in chloride-containing environments. The potentiodynamic-galvanostatic-potentiodynamic (PD-GS-PD) technique was used to determine the crevice corrosion repassivation potential (ER,CREV) in deaerated natural seawater at different temperatures for two Alloy 718 grades (i.e., aerospace, as per ASTM B670, and oil and gas, as per API 6ACRA, grades). Additionally, PD polarization testing was conducted for the API 6ACRA grade in acidified solutions with varying chloride concentrations to simulate pit/crevice-like conditions. In the aerospace heat treatment condition, Alloy 718 suffered crevice corrosion at temperatures as low as 10°C, while the API 6ACRA grade remained unaffected at the same testing temperature. Stable crevice corrosion occurred at 20°C and 50°C for both grades.

Publisher

Association for Materials Protection and Performance (AMPP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3