Sensitized Photolysis of Thioglycolic Acid in Aquatic Environment

Author:

Lis Angela,Gladchi Viorica,Duca Gheorghe,Travin Sergey

Abstract

The photochemical transformations of thioglycolic acid using model systems was studied by varying the irradiation sources and the kinetic parameters were determined. It was found that thioglycolic acid undergoes destruction on induced photolysis in the presence of humic substances, and its half-life can be estimated as 10-14 days, depending on weather conditions (cloudiness, time of day, season etc.). Results obtained in the course of this study on model systems were transferred to natural waters, and it was concluded that thioglycolic acid has a positive influence on the chemical self-purification processes of water, in the natural aquatic environment. This is manifested by increasing the self-purification capacity of water, due to the generation of active oxygen species, which lead to the degradation not only of this thiol, but of other pollutants present in aquatic environment, as well. At the same time, the products of the transformations are harmless to the aquatic environment and hydrobionts.

Publisher

Institute of Chemistry of Academy of Science of Moldova

Subject

Process Chemistry and Technology,Environmental Chemistry,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Indirect photolysis of cysteine and thiourea in the presence of metal ions in the aquatic environment;Inorganica Chimica Acta;2024-01

2. Indirect photolysis of cysteine and thiourea in the aquatic environment;Inorganica Chimica Acta;2023-11

3. Influence of Thiol Compounds on Redox State of Natural Waters in the Republic of Moldova;Environmental and Technological Aspects of Redox Processes;2023-09-21

4. Redox Self-Purification Mechanism of Natural Waters With the Involvement of Thioglycolic Acid and Thiourea;Environmental and Technological Aspects of Redox Processes;2023-09-21

5. Redox Processes in Natural Waters;Environmental and Technological Aspects of Redox Processes;2023-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3