The Spatial Distribution of Two Pine Sawflies and Methods of Sampling for the Study of Population Dynamics

Author:

Lyons L. A.

Abstract

AbstractThe spatial distribution of egg clusters and cocoons of Neodiprion swainei and N. sertifer is described, and methods are developed for estimating the density of different stages on the same numerical basis.Egg-cluster density varies directly with height in the tree, branch length, and tree size, evidently due to the females’ preference for illuminated sites. The overdispersion of egg-cluster counts reflects the heterogeneity of distribution of suitable oviposition sites rather than an inherent aggregative behaviour of parent females. Cocoon density within stands is not strongly related to the distance from the nearest tree, due to the wide dispersal of cocoon-spinning larvae. Some of the overdispersion of cocoon counts is due to differences in cocoon density between sections of a stand. Cocoons of males are more highly aggregated than those of females, and cocoons attacked by predators are more highly aggregated than ones not attacked.The sampling unit selected for each life-history stage is one that permits density estimates of desired precision at minimum cost. In some stands, egg density can be estimated at minimum cost by direct counts per quadrat, in most stands, however, the whole tree is the most economical unit, despite the fact that per-tree density must be converted to absolute density in order to express all stages on a common basis. Sampling error can be reduced by stratification according to tree size. Gradients in cocoon density are seldom steep enough to permit stratification, but the cost of sampling can be minimized by adjusting unit size. Optimal unit size varies inversely with cocoon density and degree of aggregation, and is affected by soil type and the method used to extract cocoons.The role of spatial distribution and sampling programs in studies of population dynamics is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3