SPATIAL–TEMPORAL VARIABILITY AND THE STUDY OF AQUATIC INSECTS,

Author:

Resh Vincent H.,Rosenberg David M.

Abstract

AbstractSpatial and temporal variability are essential considerations in the study of aquatic insects. Traditionally, these two sources of variability are treated separately; however, they should be considered together because they occur concurrently in natural systems. To illustrate this interaction, we constructed two-way variability tables in which spatial (habitat, reach or zone, system, intersystem) and temporal (within a day, within a season, within a year, year to year) scales were ordered on separate axes, and examples of concurrent spatial and temporal variability were entered at the intersects of the scales. We examined three aspects of aquatic insect life histories in lotic and lentic waters using such tables: emergence, feeding and growth, and movements and migrations. It proved easier to find examples for the stream tables than for the lake tables, perhaps because of greater spatial and temporal variability in lotic than lentic waters. Also, more papers have been published on stream than on lake insects over the last decade or so. Spatial and temporal scales at which lotic and lentic research is done were determined by examining the recent contents of five key aquatic journals (≈ 500 articles). Research on aquatic insects appears generally to be done at relatively long temporal scales, but at smaller spatial and shorter temporal scales in lotic than lentic systems. Perusal of the literature to find examples of concurrent spatial and temporal variability revealed the prevalence of a “mean-values” appproach to data analysis, in which investigators “homogenize” data to reduce spatial and temporal variability. However, it is this spatial and temporal variability that often provides an explanation of factors causing the patterns observed. A “variance” approach, in which data are disaggregated and fluctuations or extremes are considered, may be far more informative and may elucidate underlying mechanisms.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology

Reference113 articles.

1. Wrubleski D.A. 1984. Species composition, emergence phenologies, and relative abundances of Chironomidae (Diptera) from the Delta Marsh, Manitoba, Canada. M.Sc. thesis, University of Manitoba, Winnipeg. 115 pp.

2. Emergence of Chironomidae (Diptera) in Fertilized and Natural Lakes at Saqvaqjuac, N.W.T.

3. ANNUAL PRODUCTION OF A STREAM MAYFLY POPULATION: A COMPARISON OF METHODS1

4. Chironomidae mining in Nuphar lutea (L.) Sm. (Nymphaeaceae);Van Der Velde;Ent. scand. Suppl.,1987

5. The emergence of midges (Diptera: Chironomidae) from a wet gravel-pit

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3