Life-history parameters and population dynamics of Ericaphis fimbriata (Hemiptera: Aphididae) on blueberry, Vaccinium corymbosum

Author:

Raworth D.A.,Schade Daynika

Abstract

AbstractDevelopment rate and age-specific fecundity and survival of Ericaphis fimbriata (Richards) virginoparae were determined during the spring on young leaves of blueberry, Vaccinium corymbosum L., as functions of temperature. The same traits were measured during the summer and the autumn on both young and mature leaves at 21.2 °C. The temperature threshold for development was 4.1 ± 0.5 °C (SE). For apterae, development time from birth to adult was 157.7 ± 5.9 day-degrees (dd). Proportional lengths of instars I–IV were 0.16, 0.14, 0.34, and 0.36, respectively. Adult life was 434.5 ± 17.5 dd and proportional lengths of the pre-reproductive, reproductive, and post-reproductive periods were 0.05, 0.74, and 0.21, respectively. Mean fecundity was 23.6 ± 1.0 nymphs per female. Mean survival was 602.9 ± 14.6 dd, and more than 80% of apterae survived the peak reproductive period. Alate fecundity was 16.5 ± 3.2 nymphs per female and alate survival was 460.9 ± 47.5 dd. Leaf type and season of measurement had significant effects on development time and fecundity: development time was 158.2 dd (+4.9 upper asymmetric SE) on young V. corymbosum ‘Duke’ leaves in the spring but 312.4 dd (–16.9 lower asymmetric SE) on mature ‘Bluecrop’ leaves, the dominant leaf type, from a commercial field in the summer. Fecundity for the respective leaf types and seasons was 16.7 (–1.6) and 1.4 (+0.5) nymphs per female. From summer to autumn, development time increased on young ‘Duke’ and ‘Bluecrop’ leaves but decreased on mature ‘Bluecrop’ leaves; fecundity decreased on young ‘Duke’ and ‘Bluecrop’ leaves but remained at low levels on mature ‘Bluecrop’ leaves. A simulation model showed that seasonal changes in development time and fecundity were capable of reducing population growth rates to near zero depending on aphid distribution with respect to young and mature leaves. The results support a combined bottom-up and top-down view of aphid population regulation and suggest that control efforts should focus on the spring, when the population growth rate is maximal.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3