THE ARRIVAL SEQUENCE OF THE ARTHROPOD COMPLEX FOLLOWING ATTACK BY DENDROCTONUS BREVICOMIS (COLEOPTERA: SCOLYTIDAE) IN PONDEROSA PINE

Author:

Stephen Frederick M.,Dahlsten Donald L.

Abstract

AbstractContinuous trapping on the bark surface of Dendroctonus brevicomis LeConte infested trees in the central Sierra Nevada mountains was undertaken with the objective of determining the spatial and temporal arrival patterns of the natural enemies and other insect associates of the western pine beetle. Over 100 species of D. brevicomis associates were collected and patterns of arrival were described for many of these. The main bark beetle predators were trapped during D. brevicomis mass arrival and shortly thereafter. Enoclerus lecontei, Temnochila chlorodia, and Aulonium longum, all predaceous beetles on D. brevicomis adults and larvae, were among the first species to arrive, as was Medetera aldrichii (Diptera), a larval predator. The bark beetle parasites Roptrocerus xylophagorum and Dinotiscus (=Cecidostiba) burkei (Hymenoptera) were well synchronized with the beetles’ life cycle as they arrived late in the beetles’ larval stages when suitable hosts were available.Approximately twice as many associates were trapped in the first (spring) beetle generation as in the second (fall). Differences between species with regard to height distribution were common, and these often varied with seasonal beetle generation.Calculations of changes in species diversity through time, of the associate complex trapped at the bark surface, were made for both the first and second beetle generation. Linear correlation analysis indicated a highly significant increase in species diversity occurred from the time of the beetles’ mass arrival until brood emergence. This increase may correspond to an increase in diversity of the structure of the subcortical community, as more insect species arrived and progressively modified the habitat of the newly killed tree.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3