C. P. Alexander review

Author:

Rhainds Marc,Kettela Edward G.,Silk Peter J.

Abstract

AbstractThe Canadian registration in 2007 of Disrupt SBW Micro-Flakes®, a pheromone-based product for control of spruce budworm,Choristoneura fumiferana(Clemens), paved the way for large-scale trials to test the practicality of mating disruption as a commercial pest management strategy. We review results from field and laboratory experiments on pheromone-based mating disruption of spruce budworm conducted from 1974 to 2008. Application of pheromone from the ground or the air consistently reduced the orientation of males toward pheromone sources. Mating disruption also reduced the mating success of caged or tethered females in 15 of 16 field studies where this parameter was recorded, but had only a limited effect on the mating success of feral females. No consistent difference in the density of egg masses in control and treated plots was observed, which has often been attributed to immigration of gravid females into pheromone-treated plots. Laboratory studies suggest that false-trail following is the predominant mechanism underlying mating disruption in spruce budworm. The enhanced mating success of females with increasing population density suggests that mating disruption should target low-density emergent populations during the initial phase of an outbreak. Constraints that may limit the potential of mating disruption as a management tool include (1) difficulties associated with obtaining accurate sampling estimates at low population density to forecast the onset of outbreaks, (2) potential behavioral adaptations by which females enhance their mating success when the atmosphere is treated with pheromone, and (3) long-range dispersal of females by flight.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3