Predatory Behavior of Philodromus rufus Walckenaer (Araneae: Thomisidae)

Author:

Haynes Dean L.,Sisojević P.

Abstract

AbstractFactors which influence the rate at which Philodromus rufus Walckenaer attacks prey are discussed. Drosophila melanogaster Meign. was used as prey throughout the rearing and testing of P. rufus. Spiders used in these tests were immature at the time of capture and reared to the adult stage in the laboratory. Feeding histories were maintained for all spiders, although the experiments designed to measure the attack response of individual spiders to changing prey density were done with adult males.In the immature stage there was no difference between the feeding rate of male and female spiders. The adult males, however, were relatively inefficient predators; females killed approximately six times as many flies in their adult lives as males. The irregular feeding pattern of the females, as compared to the fairly uniform feeding pattern of the males, resulted in the males being more amenable to experimental tests. Periods of starvation, molting, and opposition strongly influenced the feeding rate of P. rufus. At high prey densities there was an inverse relationship between hunger and utilization of individual prey. This resulted from uncaptured prey interfering with the feeding spider.Both feeding time and searching time showed a relationship to prey density. Individual fly activity increased with fly density and this resulted in a functional response curve with an increasing slope. One of the basic requirements for regulation was thereby demonstrated. When prey density was corrected for the increase in fly activity by computing a new density estimate based on fly activity, a typical functional response for invertebrates became evident for hungry spiders but not for well-fed spiders. By using Holling's “disc equation” the difference between starved and satiated spiders was explained as an interaction between prey and predator characteristics. Owing to density-dependent parameters such as prey activity, predator feeding time, and “rate of discovery”, no known mathematical model fitted the data.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3