Abstract
AbstractUnder favourable conditions some species of insects and mites complete development very quickly. This paper considers species with a mean minimum generation time of 15 days or less and tabulates developmental data for many sample species. Such species belong chiefly to a limited number of taxa of small size, notably aphids and several families of mites and parasitoid Hymenoptera. Characteristics of these taxa are reviewed. Even in families containing many species with rapid life cycles, normally many other species lack such rapid development. Very short life cycles depend on phylogeny, strain, rapid development in all stages, small size, rich food, and other habitat features including high temperatures. Within this framework, life cycles are accelerated by reducing elements requiring the investment of resources (size, fecundity, longevity, structural complexity), eliminating instars and even life stages, accelerating development (through lower requirements especially of heat, heat gain by adaptations such as basking, and rapid reproduction), and choosing the most suitable habitats and microhabitats from those available. Mean minimum generation times in insects and mites with coincident adaptations of this sort can be as short as 4 days. Notwithstanding the advantages of rapid development in maximizing the intrinsic rate of natural increase (and hence fitness), most species cannot achieve the highest rates of development. They are constrained not only by resources and intrinsic physiological or phylogenetic patterns but also by variability of conditions and seasonality that can be survived only by interpolating delays or resistant stages.
Publisher
Cambridge University Press (CUP)
Subject
Insect Science,Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献