Do visual cues associated with larger diameter trees influence host selection by Tetropium fuscum (Coleoptera: Cerambycidae)?

Author:

Nelson Tyler D.,Sweeney Jon D.,Kirk Hillier Neil

Abstract

AbstractTetropium fuscum (Fabricius) (Coleoptera: Cerambycidae) is an invasive phloeophagous beetle established in Atlantic Canada that infests stressed and moribund Picea Dietrich (Pinaceae) species. Successfully colonised trees tend to be large in diameter (>10 cm diameter at breast height), but whether diameter influences host selection, larval performance, or both, is unknown. We tested the hypothesis that T. fuscum host selection is influenced by visual cues associated with tree diameter by counting the number of adults landing on 29 Picea rubens Sargent ranging in diameter at breast height from 12.2 to 37.5 cm. All trees were wrapped with sticky bands and baited with aggregation pheromone and host volatiles to make them equally attractive with regard to olfactory cues. We found significant positive relationships between the mean number of T. fuscum per sticky band and tree diameter, and also between phloem thickness and tree diameter. We conclude that the positive association between host diameter and T. fuscum infestation is at least partially due to the positive influence of diameter on landing rate, and that this may benefit the beetle because larger diameter trees have more food for developing larvae. However, there was no effect of tree diameter on the mean number of adults per m2 of sticky band and thus no evidence that T. fuscum actively selects larger diameter hosts based on visual cues. The positive relationship between landing rate and host diameter may simply be due to greater chances of airborne beetles being passively intercepted on larger versus smaller trees.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3