CHARACTERIZATION OF HYDROPSYCHE SLOSSONAE (TRICHOPTERA: HYDROPSYCHIDAE) CAPTURE NET POLYPEPTIDES

Author:

Tessier L.,Boisvert J.L.,Vought L.B-M.,Lacoursière J.O.

Abstract

AbstractThe aim of this study was to characterize polypeptide components of the capture net spun by trichopteran larvae Hydropsyche slossonae (Banks) (Trichoptera: Hydropsychidae). Thirty-one polypeptide bands were identified by SDS – polyacrylamide gel electrophoresis (SDS–PAGE) from extracted net material, with molecular weights ranging from 8500 to 179 000. Comparison with published data on Bombyx mori (L.) (Lepidoptera: Bombycidae) silk, treated under similar denaturing conditions, shows that six low molecular weight polypeptides ranging between 8500 and 18 800 in the silk of H. slossonae are absent from that of B. mori; furthermore, two high molecular weight polypeptides (210 000 and 220 000) detected in the silk of B. mori are not present in that of H. slossonae. Differences between both groups are probably related to their mode of living and to the specific use of silk (in air versus under water). Our findings are consistent with the current trend in the literature that silk spun by aquatic and terrestrial insects, as well as those spun by different species, is apparently made of different biopolymers according to the protein constituents. Hence, the polypeptide characterization of silk, combined with sequence data and (or) antibodies cross-reactivity data, could represent a potential tool for taxonomic classification improvement of aquatic insects. These results could eventually be used to characterize hydropsychid capture net anomalies induced by environmental pollution.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3