Abstract
A predator-prey model with Ivlev-Type functional response is studied. The main purpose is to investigate the global stability of a positive (co-existence) equilibrium, whenever it exists. A recently developed approach shows that for certain classes of models, there is an implicitly defined function which plays an important rule in determining the global stability of the positive equilibrium. By performing a detailed analytic analysis we demonstrate that a crucial property of this implicitly defined function is governed by the local stability of the positive equilibrium, which enable us to show that the global and local stability of the positive equilibrium, whenever it exists, is equivalent. We believe that our approach can be extended to study the global stability of the positive equilibrium for predator-prey models with some other types of functional responses.
Publisher
University of Western Ontario, Western Libraries