High order mimetic difference simulation of unsaturated flow using Richards equation

Author:

Boada Velazco Angel,Corbino Johnny,Castillo Jose

Abstract

The vadose zone is the portion of the subsurface above the water table and its pore space usually contains air and water. Due to the presence of infiltration, erosion, plant growth, microbiota, contaminant transport, aquifer recharge, and discharge to surface water, it is crucial to predict the transport rate of water and other substances within this zone. However, flow in the vadose zone has many complications as the parameters that control it are extremely sensitive to the saturation of the media, leading to a nonlinear problem. This flow is referred as unsaturated flow and is governed by Richards equation. Analytical solutions for this equation exists only for simplified cases, so most practical situations require a numerical solution. Nevertheless, the nonlinear nature of Richards equation introduces challenges that causes numerical solutions for this problem to be computationally expensive and, in some cases, unreliable. High order mimetic finite difference operators are discrete analogs of the continuous differential operators and have been extensively used in the fields of fluid and solid mechanics. In this work, we present a numerical approach involving high order mimetic operators along with a Newton root-finding algorithm for the treatment of the nonlinear component. Fully-implicit time discretization scheme is used to deal with the problem’s stiffness.

Publisher

University of Western Ontario, Western Libraries

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MOLE: Mimetic Operators Library Enhanced;Journal of Open Source Software;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3