Modeling SARS-CoV-2 spread with dynamic isolation

Author:

Islam Md. Azmir Ibne,Shanta Sharmin Sultana,Rahman Ashrafur

Abstract

Background: The SARS-CoV-2 pandemic is spreading with a greater intensity across the globe. The synchrony of public health interventions and epidemic waves signify the importance of evaluation of the underline interventions. Method: We developed a mathematical model to present the transmission dynamics of SARS-CoV-2 and to analyze the impact of key nonpharmaceutical interventions such as isolation and screening program on the disease outcomes to the people of New Jersey, USA. We introduced a dynamic isolation of susceptible population with a constant (imposed) and infection oriented interventions. Epidemiological and demographic data are used to estimate the model parameters. The baseline case was explored further to showcase several critical and predictive scenarios. Results and analysis: The model simulations are in good agreement with the infection data for the period of 5 March 2020 to 31 January 2021. Dynamic isolation and screening program are found to be potential measures that can alter the course of epidemic. A  7% increase in isolation rate may result in a 31% reduction of epidemic peak whereas a 3 times increase in screening rate may reduce the epidemic peak by 35%. The model predicts that nearly 9.7% to 12% of the total population of New Jersey may become infected within the middle of July 2021 along with 24.6 to 27.3 thousand cumulative deaths. Within a wide spectrum of probable scenarios, there is a possibility of third wave Conclusion: Our findings could be informative to the public health community to contain the pandemic in the case of economy reopening under a limited or no vaccine coverage. Additional epidemic waves can be avoided by appropriate screening and isolation plans. 

Publisher

University of Western Ontario, Western Libraries

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3