Author:
Borbatc N. M.,Shkolina T. V.
Abstract
To check the agreement of the empirical distribution with the theoretical one, especially with a relatively small sample size, the socalled nonparametric criteria of agreement are often applied. The rules for the correct application of nonparametric criteria for consent, especially when the parameters of the proposed distribution are not known and are estimated from sample data, are given in recommendations R 50.1.037–2002. In order to facilitate the practical application of the provisions of these recommendations, the authors developed a procedure in MATLAB, full the listing of which is given in the appendix. As a result of applying the procedure, the values of the statistics of the criteria, the corresponding values of the attainable level of significance, as well as the graphs of the empirical and theoretical distribution functions that allow visually assessing the degree of discrepancy between them are displayed. For a number of theoretical distributions, it is possible to use the corresponding MATLAB builtin functions.
Publisher
Izdatel'skii dom Spektr, LLC
Reference16 articles.
1. Lemeshko B. Yu., Postovalov S. N. (1997). Applied aspects of the use of consent criteria in the case of testing complex hypotheses. Nadezhnost' i kontrol' kachestva, (11), pp. 3 – 17. [in Russian language]
2. Lemeshko B. Yu., Lemeshko S. B. & Postovalov S. N. (2010). Statistic Distribution Models for Some Nonparametric Goodness-of-Fit Tests in Testing Composite Hypotheses. Communications in Statistics – Theory and Methods, Vol. 39, (3), pp. 460 – 471.
3. Applied statistics. Rules for checking the agreement of the experimental distribution with the theoretical one. Part II Nonparametric criteria. (2002). Standardization Guidelines No. R. 50.1.037 – 2002. Moscow: IPK Izdatel'stvo standartov. [in Russian language]
4. Massey F. J. (1951). The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, Vol. 46, 253, pp. 68 – 78.
5. Marsaglia G., Tsang W. W. and Wang J. (2003). Evaluating Kolmogorov’s Distribution. Journal of Statistical Software, Vol. 8, 18, pp. 1 – 4 (Available at: https://www. jstatsoft.org/article/view/v008i18).