MATHEMATICAL MODEL AND DYNAMICS OF A VARIABLE THROTTLE (CHOKE VALVE) FOR X-MAS TREES

Author:

Trukhanov K. A.,Gontarev A. V.

Abstract

One of the main elements of the subsea production system (SPS) is an adjustable throttle that regulates the supply of the medium (liquid) moved along the wellbore. The drive that controls the position of the shut-off-and-regulating element (SCE) of the throttle should provide increased requirements for reliability and dynamics, based on the requirements for the stability of the SCE, since the occurrence of self-oscillations can be the cause of the «start of disasters». Modern methods for the development and analysis of technical systems are based on the widespread use of mathematical models based on detailed knowledge of the processes and phenomena occurring in the systems under consideration. The use of a mathematical model is of great and urgent importance – it allows not to carry out expensive and costly physical experiments both in terms of time and money. The results obtained in the course of computer simulation can be used to optimize systems, determine operating modes and the causes of possible failures. The article presents the developed mathematical model of the adjustable choke of the X-mas tree. The mathematical model, unlike the existing ones, takes into account the non-stationary nature of the emerging hydrodynamic force on the SCE, as well as the nonlinearity of the hydraulic equipment – the actuator and control distributor. The paper presents the results of a numerical experiment and compares the proposed mathematical model with the results of a numerical experiment. The scientific novelty of the work lies in the creation of an object-oriented mathematical model of an adjustable choke of X-mas trees, taking into account the non-stationary load on the actuator, as well as the non-linearities of the control equipment.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Medicine

Reference10 articles.

1. Trukhanov K. A. (2019). Design methods for optimal pneumatic tracking devices for controlling systems with fluid media. FGBOU VPO MGTU im. N. E. Baumana. [in Russian language]

2. Gontarev A. V., Menagarishvili N. A., Trukhanov K. A. (2022). Method for calculating the hydrodynamic in an adjustable of Christmas tree. Spravochnik. Inzhenerniy zhurnal s prilozheniem, (6), pp. 8 – 19. [in Russian language] DOI: 10.14489/hb.2022.06.pp.008-019

3. Popov D. N. (2002). Mechanics of hydraulic and pneumatic actuators: a textbook for universities. 2nd ed. Moscow: Izdatel'stvo MGTU im. N. E. Baumana. (Seriya: Mekhanika v tekhnicheskom universitete; Vol. 7). [in Russian language]

4. Popov D. N., Astashev V. K., Frolov K. V. (Eds.), Gustomyasov A. N. et al. (2012). Engineering. Encyclopedia. Vol. IV-2. Electric drive. Hydro- and vibrodrives. In two books. Book 2. Hydraulic and vibration drives. Moscow: Mashinostroenie. [in Russian language]

5. Trukhanov K. A. (2022). Dynamics of pneumatic drive. Lecture cycle. Mathematical model of the servo pneumatic actuator. Spravochnik. Inzhenerniy zhurnal s prilozheniem. Prilozhenie, (7), pp. 1 – 19. [in Russian language] DOI: 10.14489/hb.supp.2022.07.pp.001-019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3