Author:
Smagin D. I.,Napreenko K. S.,Savel’ev R. S.,Grachev S. V.
Abstract
The process of creating an accident-resistant fuel system (AFS) of a helicopter using mathematical modeling is considered. Possibility of applying optimization algorithms in mathematical modeling of parameters of units of accident-resistant fuel system of helicopter in domestic software complex SimInTech is studied. An approach to solving the problem of optimizing given parameters, both in theory and in practice, is described. Results of the simplest optimization of AFS parameters for nominal operation mode are covered, examples of algorithms for selection of unit parameters are shown. This method of researching the system will allow, with a high degree of accuracy, to determine the necessary parameters at the design stage of the system. It is worth noting that the functionality of the developed dynamic mathematical model in the SimInTech software package is sufficient to perform tasks not only of the conceptual design stage, but also of the subsequent stages of the AFS life cycle.
Publisher
Izdatel'skii dom Spektr, LLC
Reference20 articles.
1. Strelets D. Yu., Smagin D. I., Starostin K. I., Savel'ev R. S. et al. (2018). Improving the quality of the calculation of air parameters in the passenger areas of a short-medium-haul aircraft through the interaction of one-dimensional (SimInTech) and three-dimensional (LOGOS) software systems. Computational nanotechnology, (4), pp. 35 – 40. [in Russian language]
2. Petrov P. V., Tselishchev V. A. (2019). Numerical modeling of the operation of automatic control systems of an aircraft gas turbine engine in steady-state and transient modes. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika, 57, pp. 7 – 16. [in Russian language]
3. Kokunin Yu. V., Chernyh A. K., Gar'kushev A. Yu., Ivanova D. D. (2016). Simulation of a control system for compressor guide vanes for a helicopter engine. Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskie sredstva protivodeystviya terrorizmu, 93-94(3-4), pp. 35 – 39. [in Russian language]
4. Smagin D. I., Starostin K. I., Savel'ev R. S., Kobrinets T. A. et al. (2018). Methods for creating a dynamic mathematical model of a neutral gas system for a promising aircraft in the Simintech software package. Computational nanotechnology, (2), pp. 21 – 27. [in Russian language]
5. Smagin D. I., Trofimov A. A., Napreenko K. S., Neveshkina A. R. (2020). Mathematical Model of Lithium-Ion Battery Cell and Battery (Lib) on its Basis 2019. Workshop on Materials and Engineering in Aeronatics. IOP Conference Series: Materials Science and Engineering.